برق. قدرت. کنترل. الکترونیک. مخابرات. تاسیسات.

دایره المعارف تاسیسات برق (اطلاعات عمومی برق)

نویز چیست؟

در زندگی روزانه  نویز(noise) به صدایی ناخواسته و بلند گفته می شود که هیچ نظم موسیقی نداشته باشد  در دورانی که ارتباط رادیودیی وجود داشت ، نویز “هر سیگنال الکتریکی که باعث مختل کردن ارتباط رادیودیی می شود ” تغریف شد . ( برگرفته از فرهنگ لغت وبستر). این نوع نویز قبل شنیدن بود ؛ مانند نویزی که در گوشی ها می شنویم .
در یک تعریف کلی تر ، به هر نوسانو تغییر غیر عمدی که بر روی سیگمال های مورد اندازه گیری ظاهر می شود ،نویز گفته می شود . هر کمیتی می تواند نویز بپذیزذ . در مدار های الکتریکی ما با  نویر وتاژ و نویز جریان یر و کار داریم ؛ این نویز ناشی از تغیرات گرمایی و تاثیر آنها بر روی حامل های الکترونیکی است . در ناحیه رادیو و میکرو ویو  ما با نویز های الکترو مغناطیسی سر و کار داریم . نویز هایی که ناشی از  گرما یا تابش وتون های کم انرژی است .  ولی نویز می تواند به تغییرات غیر عمدی کمیت های دیگری نیز باشد . مانند ترافیک در اتوبان ها( مثال بارزش اتوبان های تهران که اصلا همش نویز هست!)یا ریتم قطره های ا بر روی سقف .
نویز در همه جا حضور دارد ؛ هرجا که کسی سیگنالی را بخواهد اندازه گیری کند ، حتما یک نوع نویز بر روی آن می افتد . هر آزمایش دقیق و با کیفیت بالا که در دنیای فیزیک  انجام می ود ، به کار زیادی نیاز دارد تا بتوان نویز محیط را پیش بینی و همچنین به طرقی تاثیر آن را کم کرد. اهمیت تحلیل نویز وقتی کاملا نمایان می شود که یک فرد متوجه بشود که کیفیت سیگنا انازه گیری شده به وسیله ی مقدار مطلق انرژی سیگنال  تعیین نمی شود  بلکه از نسبت سیگنال به نویز  تعینن میشود . نتیجه تحققات نشان می دهد که بهترین روش برای بهبودی نسبت سیگنال به نویز ، کاعش نویز است نه افزایش قدارت سیگنال .
نویز تصادفی طبق تعریف ، غر قابل کنترل است و مقدار دقیق آن در آزمایش های مختلف با هم فرق دارد.  پس بهتر است که به صورت آماری نشان داده شود .
نویز تصادفی است و معمولا توزیع آن را توزیع گاوسی در نظر می گیرند( البته این توزیع معمولا در نظر گرفته می شود ولی در شرایط متفاوت ممکن است توزیع های متفاوتی در نظر  گرفته شوند ) . تصادفی بودن نویز  باعث می شود که میانگین آن صفر شود . پس برای توصیف آن از مقادیر توان دو آن استفاده می شود .  مقدار موثر نویز از جذر میانگین مربعات آن بدست می آید .(rms) .البته این پارامتر هیچ اطلاعاتی در مورد نتغیر با زمان بودن نویز و یا  اجزای فرکانسی آن نمی دهد .
لازم است تغییر پذیری با زمان را برای نویز تعریف کنیم . نویزی را ایستا می گوییم ( نا متغیر با زمان ) که ویژگی های آماری آن با زمان تغییرنکند. به طور مثال واریانس و یا مقدار موثر  آن با زمان تغییر نکند .

در شکل های فوق ، شکل سمت جپی نویزی مستقل از زمان را نشان می دهد ( چون با زمان تغییراتی در انرژی آن (که توان دو آن سیگنال است ) رخ نداده ولی در عوض شکل سمت راستی تغییر پذیر با زمان است. ( ابتدا مقدار زیادی دارد ولی با گذشت زمان تغییر میکند .

در سیستم هایی که چند منبع نویز وجود داشته باشد  نویز کلی می تواند به شورت مجموع نویز های مختلف نوشته شود . اگر این نویز ها مستقل از یکدیگر باشند می توان مقدار موثر را به صورت جمع مقدار های موثر تک تک منابع نویز نوشت . ( نویز هایی مستقل هستند که میانگین حاصلضزب دو به دوی نویز ها صفر شود )

یکی از پارامتر هایی که در بررسی نویز تعریف می شود ، چگالی طیفی نویز است  .  تعریف این پارامتر در زیر آمده است .

در رابطه ی فوق ، N نشان دهندهی نویز ( که ممکن است بعضی اوقات از جنس ولتاژ باشد که اینجا اینطور فرض شده ) مقدار صوزت میانگین مجذور نویز است ( که ارتباطی نزدیک با انرژی نویز دارد ) .  مخرج هم تغییرات فرکانس
این ربطه نشانمی دهد که اگر در بازه ای خاص بین f1 و f2 انتگرال بگیریم ، انرژی در آن بازه ی خاص به دست می آید .
این عبارت را می توان انرژی نویز به ازای هر فرکانس نامید . یعنی وقتی که از این عبارت در بازه ی خاصی اندازهگیری ی شود ، انرژی در آن بازه بدست می آید .

ادامه ی این مقاله در ادامه ی مطلب

انواع نویز :
نویز بر اساس تغییرات زمانی و فرکانسی خود بیشتر مشخص می شوند . در شکل زیر نویز را بر اساس چگالی طیفی نویز ( که بر اساس فرکانس است) رسم شده است.
نویز هایی که در زیر آمده است ، معمول ترین نویز های موجود هستند :
۱-   نویز سفید طیفی ( یا در واقعیت ، نویز صورتی )
۲-   آشفتگی هارمونیک ها
۳-   نویز ۱/f
4-   رانش

در اینجا ، منبع هر کدام از نویز ها مورد بررسی قرار می گیرد و مهمترین نویز ، نویز سفید ، بیشتر تاکید می شود .
نویز سفید طیفی طبق تعریف به نویزی گفته می شود که طیف چگالی آن به فرکانی بستگی نداشته باشد .( مقدار ثابتی باشد ). البته این یک تعریف ایده ال است چون اگر از یک عدد ثابت نسبت به فرکانس انتگرال بگیریم ، واریانس نویز ( یا همان انرژی نویز ) بی نهایت به دست می اید . در سیستم های هایی که بیشتر مورد بررسی قرار می گیرند ، نویز عملا سسفید نیست بلکه “صورتی ” است .به این معنا که داری